Belmont College’s Blanton Hall, which burned December 30, 1972, had in previous years held an open secret in its basement—dozens of live snakes in dozens of wooden crates with glass tops! The collection included some pit vipers, such as copperhead, timber rattlesnake, king cobra, puff adder, cotton mouth moccasin, and a deadly Vietnamese Viper affectionately (?) called “Five Step Charlie.” An adult who received a bite from “Charlie,” it was estimated, could make no more than five steps until overcome by almost instant death! One of the most dangerous snakes in Blanton Hall was the gaboon rattlesnake of South America, because there was no anti-venom serum in Nashville for this particular snake. How did the snakes get to Belmont, where they were housed in the Biology lab for several years? Dr. Ronald Barrett, retired Biology professor who had to pass a deadly Gila monster lizard in the hall and the snake-filled lab to get to his office and the light switch, indicated they belonged to a Biology major named Dennis Gibson (graduated 1969), and that some of the snakes were originally Dennis’ private collection. (Interview with Dr. Ronald Barrett, September 24, 2009). Dennis attended Belmont at least three years, and just enjoyed collecting snakes. A fellow student (also graduate in 1969) named Howard Lawler, was doing a research project concerning many different kinds of snakes, and Gibson assisted him with the snakes. Lawler is, to this day, a nationally-recognized herpetologist. He had ten poisonous snakes and 40 non-poisonous snakes at one time, but during the time he was doing his research, he worked with a total of 100 different snakes. At one point, the snakes formed the basis for the entire collection of the Tennessee Herpetology Society, all housed in the basement of the already crowded Blanton Hall!

Dr. Barrett states that he dreaded walking through the darkened lab to get to his office and turn on the lights. He never actually stepped on a snake, but Dr. Barrett did find a live snake loose in his office on at least one occasion. The snakes were housed in the Biology lab, and the students engaged in lab assignments had to work around or move the snake-filled containers.

Dr. David Hill, retired Belmont Biology professor, says that all the snakes were gone from Blanton Hall by the time he joined the Belmont faculty in the fall of 1972. (Interview with Dr. David Hill, September 25, 2009). There were many reports from late-working faculty, however, that there were noises in the antiquated heating system and ductwork that could be distinctly heard at night when the building was otherwise quiet. The late Prof. Janet Wilson, English Department, mentioned her fears that one of the snakes had escaped and was living in Blanton Hall. Several of her colleagues were believers, because they, too, had heard the late-night noises.

Interestingly enough, after the great Blanton Hall fire of December 30, 1972, Robert Glaus, Belmont’s superintendent of buildings and grounds, quietly reported a few months later that the remains of a giant python was found after the fire. (Dr. Don Ramage Interview, August 14, 2009.) The python was several inches in diameter, and had apparently perished in the flames. Former Biology department chair Don Ramage believed the python had stayed alive for several years living on the mice and rats which could be found in the science labs and perhaps in the walls and other parts of the huge, aged building.

Next: 1973 and a Huge Rebuilding Challenge!
RUBRICS, RUBRICS, EVERYWHERE
By Julie R. Hudgens, PharmD, BCPS

As faculty, we exercise careful thought to ensure that the assignments and projects we give our students aid in the achievement of our course’s ability outcomes. To develop an assignment that assesses the students’ knowledge, skills, and attitudes takes time. In return, providing students feedback on the completed assignment will also continue to contribute to their learning and aid in their improvement on future exercises. Providing meaningful feedback is also labor-intensive, especially when one considers that the feedback needs to be specific and tailored to each individual’s needs as much as possible.

Using rubrics to grade assignments and projects can be a useful way to give students specific, useful feedback in a time-efficient manner. Rubrics will require more time up front, but will save time when it comes to grading. The development of a rubric has four phases and should not be started until the assignment objectives and performance criteria have been finalized.

The first phase is deciding what components of the performance criteria are most important to assess. This information will go in the left column of your rubric. For example, for an assignment that requires students to identify and categorize drug-related problems, the specific performance criteria may be:
1. Correct identification of drug-related problems
2. Correct classification
3. Organization
4. Readability (i.e., spelling/grammar/professional tone)
5. Followed directions

The second phase is deciding on the scale that you will use. It is important to avoid terms that have a negative connotation, such as “Poor.” Consider using terms that demonstrate that the student is in the learning process and has room for improvement. Your scale will be listed across the top of your rubric. For the example assignment above, the scale may consist of:
1. Distinguished
2. Proficient
3. Intermediate
4. Novice

The third phase of rubric development consists of creating a definition for each performance criteria according to each level of the scale. Meaning, what does it mean or how does it differ if a student achieves “distinguished” for organization versus a student that achieves an “intermediate” level. Careful consideration should be given when moving horizontally across a row to make sure there is enough differentiation between the characteristics of each. Also, the more objective data that you can include the better. Going back to the example assignment, when moving across the scale of distinguished to novice for identification of drug-related problems, distinguished may represent an assignment where all of the drug-related problems were identified, proficient represents an assignment where 1 problem was not identified, intermediate represents an assignment where 2 problems were not identified, and novice represents an assignment where greater than or equal to 3 problems were not identified.

Some boxes may contain more than one specific criteria. If Readability encompasses spelling, grammar, and professional tone, it can be more difficult for the student to derive specific feedback if they do not know specifically which one of these criteria caused points to be deducted. One possible solution is to provide check boxes within each criteria. Consider a student who consistently uses layman’s terms versus medical terminology, but has no spelling or grammar errors. This student may be marked as “intermediate” for readability. If separate check boxes are next to each of the criteria (spelling, grammar, and professional tone), the evaluator can check the professional tone box which will give the student more specific and valuable feedback that they can use to improve their performance in the future.

The fourth phase involved assigning each performance criteria a weight. All criteria can be weighted equally or you may feel some criteria are more important than others and therefore assign them higher weight. If you choose to assign different weight to each category, you have two options. You may have all of the criteria start with the same amount of points under the “distinguished” category, and then decrease at different rates as you move horizontally across the rows towards “novice”. In the above example with five performance criteria, each could be assigned a worth of twenty points. If I believe identifying drug-related problems and categorizing them is more important than organization, readability, and following directions, I may assign the following weights:

With these weight assignments, as a student’s performance decreases in organization, readability, or followed directions, they are not penalized as much as if their performance decreases in identifying or categorizing drug-related problems.

Alternatively, you may choose to assign each box a different weight from the beginning under “Distinguished.” If you decide to use different weights, you can be sure to convey to the students where you are placing emphasis by converting the points to percentages. This will make it more clear to them what the most important aspect of the assignment is.

When in the development stage, it may be a useful exercise to let your students offer suggestions for weight. This has many advantages such as getting student buy-in, helping them internalize the criteria, and increasing the sense of the classroom as a learning community. For this to work best, the professor needs to maintain “veto” power and may consider filling in both extremes of the scale (i.e., distinguished and novice) and let the students assign the points in the middle.

Once a rubric is completed and used for an assignment, a part of the assignment could be to have the students complete the rubric as a form of self-assessment. This, again, will help internalize the instructor’s expectation and will aid in the improvement of the students’ critical thinking skills. For this to be a valuable experience, I have found it useful to have them provide evidence or justification for why they gave themselves a certain scale point for each performance criteria.

As discussed, rubrics can contribute to the classroom environment and learning in ways beyond being a tool for grading. They increase efficiency while grading and have the ability to provide students with specific and objective feedback. They do take time to develop up front, and depending on your assignments, you may have to develop a rubric for each assignment. Another positive feature is that once you have a sound rubric developed, adapting for future assignments is not labor intensive and will be sure to save you grading time in the future.


Strength Identified is a photography exhibit co-sponsored by the Art Department, the Senior Art Capstone Class and the Residence Life STRONG Program. The exhibit runs through December 15th in Gallery 121 in the Leu Center for the Visual Arts.

<table>
<thead>
<tr>
<th>PROBLEMS IDENTIFIED</th>
<th>20 points</th>
<th>15 points</th>
<th>10 points</th>
<th>5 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEMS CATEGORIZED</td>
<td>20 points</td>
<td>15 points</td>
<td>10 points</td>
<td>5 points</td>
</tr>
<tr>
<td>ORGANIZATION</td>
<td>20 points</td>
<td>16 points</td>
<td>13 points</td>
<td>10 points</td>
</tr>
<tr>
<td>READABILITY</td>
<td>20 points</td>
<td>16 points</td>
<td>13 points</td>
<td>10 points</td>
</tr>
<tr>
<td>FOLLOWED DIRECTIONS</td>
<td>20 points</td>
<td>16 points</td>
<td>13 points</td>
<td>10 points</td>
</tr>
</tbody>
</table>
In the midst of beginning another hectic school year, take a deep breath and a moment to imagine the consequences of suddenly having a stroke or traumatic brain injury. Consider the misfortune of a successful neuroscientist, who taught Harvard medical students and conducted research at the Brain Bank, having a massive stroke at the age of 37. After surviving a massive bleed in the left hemisphere of her brain, Dr. Jill Taylor wondered if she would be able to speak again, to walk again and would they take her PhD away?

The ways in which Jill connected with the outside world for help during the four hours her brain was hemorrhaging are amazing story. Because the left hemisphere contains the speech and language centers, she could neither speak intelligibly nor recognize phone numbers. Each normal function shut down one by one as the bleed progressed. The curious neuroscientist in her monitored the details, overcoming the fear and desire to succumb to a peaceful death. Jill described the loss of her ‘brain chatter’, which refers to the left brain monitoring time and details, categorizing everything so that we can make sense of the world. With the left brain injured, her right brain became dominant resulting in silent euphoria and feeling at one with the universe.

During the hospital stay through brain surgery to remove the golf ball-sized clot, Jill describes the warm and comforting silence in her right brain pulling her toward sleep and shutting out the busy chaos of the hospital. She could not distinguish one object from another due to the right brain seeing only the big picture and not boundaries. Therefore, she could not see people until they moved against the background. Color discrimination was also absent. Her visual world was a mosaic of vibrating energy sources. All noises were painful and magnified. For months, she could not tolerate television or radio and perceived that input as a screaming intrusion. Although she could not understand people talking to her, the right brain sensed compassion versus healthcare workers who were just in a hurry to complete their tasks.

Her memories and life experiences were like files locked in file cabinets, and it was slow, hard work to learn to access the files. Going to her 20th high school reunion six months after her surgery helped to activate a lot of memories by cues from her friends. Jill concentrated on mental imagery to keep the neural circuits alive in her brain long before she was able to perform a task with her body. As she regained her left brain function, Jill purposefully chose not to reactivate the negative loops of thought–her emotional baggage. She recounts the effort of physical recovery as minimal compared to rebuilding her mind. Some of the inconceivable challenges during her recovery included:

- Four years to walk with a normal rhythm
- Four years to do two tasks at the same time, such as talking on the phone while cooking
- Four years to execute basic math and five years to be able to master division
- Five years to jump without looking at the ground
- Six years to climb steps two at a time
- Seven years to transition from needing 11 hours of sleep per night to only 9 and 1/2
- Seven years to dream of people and stories again instead of ‘scrolling bits of data’
- Eight years to feel her body as a solid in space instead of fluid and
- Eight years for a complete recovery

Working through extreme pain toward a full recovery was driven by her will to tell this story and help others in the process. Her first goal was to increase public awareness of the signs and symptoms of having a stroke. Jill also offers great insight into what kind of care patients of brain injury really need, and much of the information is in conflict with traditional treatment for these patients. Health care professionals need to read this book. Information about the plasticity of the brain and facilitating connection to the calm, peaceful and non-judgmental right brain make it a worthy read for anyone.